We don't <u>need</u> to use complex variables/complex notation to realize that whenever the path length difference $\Delta r \equiv r_2 - r_1 = n\lambda$, where $n = 0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots$ and $\lambda = v/f$ where v = speed of sound in air (~ 343 *m/s* @ NTP), <u>constructive</u> interference will occur – the two individual sound waves are precisely <u>in-phase</u> with each other at the observation point *P*, thus sound intensity <u>maxima</u> will be heard at such locations, whereas whenever the path length difference $\Delta r \equiv r_2 - r_1 = n'\lambda/2$, where $n' = \pm 1, \pm 3, \pm 5, \pm 7, \ldots$ destructive interference will occur – the two individual sound waves are precisely 180° <u>out-of-phase</u> with each other at the observation point *P* – thus intensity <u>minima</u> will be heard at such locations.

Acoustical Interference Phenomena

Whenever two (or more) periodic sine-wave type signals are linearly superposed (*i.e.* added together), the resultant/overall waveform depends on the <u>amplitude</u>, <u>frequency</u> .and. <u>phase</u> associated with the <u>individual</u> signals. Mathematically, this is often most easily and transparently described using complex notation.

Basics of / A Primer on Complex Variables and Complex Notation:

We can use complex variables/complex notation to describe physics situations whenever <u>relative</u> phase information is important. A complex quantity, denoted as \tilde{Z} consists of two components: $\tilde{Z} = X + iY$. X is the known as the "<u>real</u>" part of \tilde{Z} , denoted $X = \operatorname{Re}\{\tilde{Z}\}$ and Y is the known as the "<u>imaginary</u>" part of \tilde{Z} , denoted $Y = \operatorname{Im}\{\tilde{Z}\}$. If a <u>reference</u> signal is present, the real component $X = \operatorname{Re}\{\tilde{Z}\}$ of complex \tilde{Z} is in-phase (180° out-of phase) with the reference signal if X is +ve (-ve), respectively. The imaginary component $Y = \operatorname{Im}\{\tilde{Z}\}$ of complex \tilde{Z} is +90° (-90°) out-of-phase with the reference signal if Y is +ve (-ve), respectively.

The number $i \equiv \sqrt{-1}$. The <u>magnitude</u> of the complex variable \tilde{Z} is denoted as $|\tilde{Z}| \equiv \sqrt{\tilde{Z}\tilde{Z}^*}$ or $|\tilde{Z}|^2 \equiv \tilde{Z}\tilde{Z}^*$ where \tilde{Z}^* is the so-called <u>complex *conjugate*</u> of \tilde{Z} , which changes $i \to -i$, such that $i \cdot i^* = \sqrt{-1} \cdot -\sqrt{-1} = +1$ (note that $i^2 = -1 = (i^*)^2$ and $i \cdot i^* = i^* \cdot i = +1$), thus we see that: $\tilde{Z}^* = (\tilde{Z})^* = (X + iY)^* = X - iY$. Hence we see that: $|\tilde{Z}| \equiv \sqrt{\tilde{Z}\tilde{Z}^*} = \sqrt{(X + iY)(X - iY)} = \sqrt{X^2 + iXX} - iXX + Y^2} = \sqrt{X^2 + Y^2}$. Thus, we realize that the magnitude of \tilde{Z} , $|\tilde{Z}|$ is analogous to the hypotenuse, c of a right triangle ($c^2 = a^2 + b^2$) and/or e.g. the radius of a circle, r centered at the origin ($r^2 = x^2 + y^2$).

Because complex variables $\tilde{Z} = X + iY$ consist of two components, \tilde{Z} can be graphically depicted as a 2-component "vector" (*aka* "phasor") $\tilde{Z} = (X, Y)$ lying in the so-called 2-D <u>complex plane</u>, as shown in the figure below.