<u>Force</u>: — (*SI* units = Newtons = $kg \cdot m/s^2$)

Newton's 2^{nd} Law of motion: Instantaneous Force = (mass, *m*) * (instantaneous acceleration, *a*)

$$\vec{F}(\vec{r},t) = m\vec{a}(\vec{r},t)$$

$$kg \quad m/sec^{2}$$

Force is a 3-D vector quantity.

l Newton of force =
$$1 kg - m/(sec)^2$$

Weight, $W = (mass, m) \times (gravitational acceleration, g)$. *n.b.* Weight, *W* is a <u>force</u>!

Earth's gravitational acceleration:
$$g = 9.81 \text{ m/sec}^2$$
 (at sea level) $g = \frac{G_N * M_{earth}}{(R_{earth})^2}$
 $W = mg$

<u>Pressure</u>: — Pressure = force F per unit area, A. n.b. Pressure, p is a <u>scalar</u> (not vector) quantity!

 $p = F/A \qquad (Newtons/(meter)^2)$

SI / metric units of pressure = Pascal, *Pa* 1 *Pa* = $1N/m^2$. 1 Atmosphere (14.7 *psi*) = 101,325 Pascals = 1.01325×10^5 Pascals.

Work & Energy: — Work $W = \int_C \vec{F}(\vec{r}) \cdot d\vec{\ell}(\vec{r})$. If force is <u>constant</u>: Work W = Force, $F \times$ Distance, d

For <u>constant</u> force: W = Fd = energy required to *e.g.* move an object of weight W = mg upwards a distance *d* on earth's surface (= uniform gravitational field).

SI / metric units of work & energy = <u>Joules</u>

Energy is (always) conserved

Energy required to move an object can be electrical, gravitational, wind, chemical, etc.

<u>Power</u>: = instantaneous time rate of change of energy (*SI* units = *Watts*)

Power
$$P(t) = \frac{\partial E(t)}{\partial t}$$
 Watts = Joules per second = Joules/sec
1 kilo-Watt = 1000 Watts = 10³ Watts
1 mega-Watt = 1 million Watts = 10⁶ Watts
- 6 -

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. All rights reserved.