- This kind of wave is known as a **longitudinal** wave because atoms in these media are displaced *longitudinally* (*i*.*e*. parallel) to the direction of propagation of the disturbance, as the disturbance passes through a given region of the medium.
- Thus, sound waves that we can hear with our own ears are the result of physical vibrations of matter – collective, vibrations of atoms/molecules.
- Food for Thought: Is it possible to "hear" the sound associated with *one* atom or one molecule vibrating? – Answer: yes – *e*.*g*. via use of various of today's nanoscale technologies! But atomic/molecular vibrations "heard" not as sound waves – the frequencies associated with quantum-mechanical vibrations are usually *very* high (*e.g.* GH_Z {10⁹ H_Z } – molecular or TH_Z {10¹² H_Z } – atomic), compared to *e.g.* 20 KH_Z . The high frequencies would need to be scaled down (by a huge amount) in order for us to Hear/perceive them – in the audio frequency range $(20 Hz - 20 KHz)$.
- Sound waves propagating in a physical medium propagate with a characteristic speed in that medium – known as the **speed of sound**.
	- Speed of sound in (dry) air (at sea level) is $v_{\text{air}} \sim 345$ meters/second (m/s)
	- A more accurate relation is: $v_{\text{air}} \sim 331.4 + 0.6 \times T$ m/s where *T* is the temperature of the air (in Celsius degrees).
	- Practical problem: If lightning strikes the ground 1 mile away from you ($=$ 5280 ft $=$ 1609.3 *m*), how long after you see the lighting will you hear the thunder? Distance (m) = speed (m/s) * time (s), *i.e.* $d = vt$, so therefore $t = d/v$. The answer is $t \sim 4.7$ *s*.
- Sound waves propagating in a physical medium also carry **energy**, *E* (Joules, *J*) in the wave and also carry **momentum**, *p* (*kg-m/s*) in the wave.
- Sound waves propagating in a physical medium exert a **force**, *F* (Newtons, *N*) on the atoms/molecules in the medium in the vicinity of the wave disturbance.
	- In a gas, such as air, these forces create local hi/lo variations in the density ρ and pressure *P* (via ideal gas law: *PV = NRT*).
	- True also for fluids not truly incompressible....
	- Solids are in fact *elastic* atoms bound together (via *EM* force!) making up the solid in some kind of 3-D lattice arrangement of atoms in the solid deforms/stretches as the acoustic disturbance passes through the solid material.