## UIUC Physics 193/406 Physics of Music/Musical Instruments The Physics of a Longitudinally Vibrating Metal Rod

f1(t) and f2(t) vs. time, t



If the individual displacement amplitudes associated with the sounds emanating from each of the two individual sound sources are given by:

$$y_1(x,t) = A_1 \cos\left(\omega_1 t\right) = A_1 \cos\left(2\pi f_1 t\right)$$

and

$$y_2(x,t) = A_2 \cos(\omega_2 t) = A_2 \cos(2\pi f_2 t)$$

Then the total displacement amplitude is just the linear sum of the two individual amplitudes:

$$y_{tot}(x,t) = y_1(x,t) + y_2(x,t) = A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t)$$

In the first figure below, we show the total displacement amplitude,  $y_{tot}(x,t) = y_1(x,t) + y_2(x,t)$  for the first 1/10 of a rotational period,  $\tau$  so that the high-frequency structure associated with the two individual frequencies,  $f_1$  and  $f_2$  (~ 1670 ± 23 Hz) can be readily observed. The *envelope* of the high-frequency waveform is modulated at the beat frequency,  $\Delta f = |f_1' - f_2'|$ .

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL, 2002-2017. All rights reserved.