The next higher, fifth harmonic mode of vibration of the rod (n = 5) is shown in the figure below. The frequency f_5 is five times higher than that of the fundamental frequency, f_1 , since the wavelength, $\lambda_4 = \frac{2}{4L} = \frac{1}{2}L$ for this mode of vibration of the rod is one fourth of that of the wavelength, $\lambda_1 = 2L$ associated with the fundamental mode. This mode of vibration of the rod has five nodes, one at x = 0, two nodes located at $x = \pm^{1}/_{5}L$, and two others located at $x = \pm^{2}/_{5}L$. There are six anti-nodes, two located at $x = \pm^{1}/_{10}L$, two located at $x = \pm^{3}/_{10}L$ and two located at the endpoints, at $x = \pm^{5}/_{10}L = \pm^{1}/_{2}L$.

There in fact exists an infinite hierarchy of so-called *normal modes of vibration* of the rod. Note that all modes (n = 0, 1, 2, 3, 4, 5, ...) of vibration of the rod all have the *same* longitudinal speed of propagation of sound in the rod,

$$v = f_1 \lambda_1 = f_2 \lambda_2 = f_3 \lambda_3 = \dots = f_n \lambda_n$$

the frequencies of the higher modes are integer multiples of the fundamental mode, $f_n = n f_1$, where n = 1, 2, 3, 4, 5, ... The wavelengths associated with the higher modes of vibration are related to the wavelength of the fundamental mode by $\lambda_n = \lambda_1/n = 2L/n$.

When a person excites the rod by holding the rod at its mid-point with one hand and pulling on it with rosin-dusted thumb and index fingers of the other hand, not only the fundamental is excited, but in fact the third, fifth, seventh, ninth, ... – all odd-*n* harmonics (n = 1, 3, 5, 7, 9, ...) are also excited. Note that the odd harmonics all have a node at the mid-point of the rod, x = 0, where it is held.

If the rod is held at $x = \pm^{1/4} L$ to excite the 2nd harmonic, it can be seen that this location is at an anti-node of the 4th harmonic – thus the 4th harmonic cannot be simultaneously excited by holding the rod at this point. Only if harmonics simultaneously have a common node at a given location along the length of the rod, will it then be possible to simultaneously excite more than one such harmonic of the rod.