

(*i.e.* one octave above) since the wavelength, $\lambda_2 = L$ for this mode of vibration of the rod is half that of the wavelength, $\lambda_1 = 2L$ associated with the fundamental mode. This mode of vibration of the rod has two nodes, located at $x = \pm^{1}/_{4} L$ and three anti-nodes, one located at the mid-point of the rod at x = 0, and at the two ends of the rod, at $x = \pm^{1}/_{2} L$.

The next higher, third harmonic mode of vibration of the rod (n = 3) is shown in the figure below. The frequency f_3 is three times higher than that of the fundamental frequency, f_1 , since the wavelength, $\lambda_3 = \frac{2}{3L}$ for this mode of vibration of the rod is one third of that of the wavelength, $\lambda_1 = 2L$ associated with the fundamental mode. This mode of vibration of the rod has three nodes, one node located at x = 0, and two others located at $x = \pm \frac{1}{3}L$. This mode of vibration has four anti-nodes, two located at $x = \pm \frac{1}{6}L$ and two located at the ends of the rod, at $x = \pm \frac{1}{2}L$.

The next higher, fourth harmonic mode of vibration of the rod (n = 4) is shown in the figure below. The frequency f_4 is four times (i.e. two octaves) higher than that of the fundamental frequency, f_1 , since the wavelength, $\lambda_4 = 2/4L = \frac{1}{2}L$ for this mode of vibration of the rod is one fourth of that of the wavelength, $\lambda_1 = 2L$ associated with the fundamental mode. This mode of vibration of the rod has four nodes, two nodes located at $x = \pm 1/8 L$, and two others located at $x = \pm 3/8 L$. There are five anti-nodes, one located at x = 0, two located at $x = \pm 1/4 L$ and two located at the endpoints, at $x = \pm 1/2 L$.

5

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL, 2002-2017. All rights reserved.