If the loudness of the fundamental (n = 1) is $L_1 = 60 \ dB \ (100 \ dB)$ for a triangle wave, this corresponds to an intensity associated with the fundamental tone of $I_1 = 10^{-6} \ (10^{-2})$ *Watts/m*², respectively. If the *ratio* of the amplitude for the *n*th harmonic to the amplitude of the fundamental associated with the triangle wave is $|r_n| / |r_1| = 1/n^2$, for *odd* n = 3, 5, 7, 9, ... etc. Then the ratio of intensity for the *n*th harmonic to the intensity for the fundamental associated with the triangle wave is $I_n / I_1 = (1/n)^4$, and the terms, e.g for n = 3 are:

and

$$log_{10} (I_n / I_1) = log_{10} (1/n)^4 = 4 log_{10} (1/n) = 4 log_{10} (0.3333) = -1.9085$$

$$log_{10}(I_1/I_0) = 6$$
 (10) for $I_1 = 10^{-6} (10^{-2}) Watts/m^2$, respectively.

Thus, the human ear will perceive the loudness, L_n of the n^{th} harmonic, relative to perceived loudness, L_1 of the fundamental of the triangle wave, as heard e.g. through a loudspeaker as:

$$L_n/L_1 = 1 + \{log_{10}(I_n/I_1) / log_{10}(I_1/I_o)\}$$

Then for the 3^{*rd*} harmonic:

$$L_3/L_1 = 1 - \{1.9085/6\} \ (= 1 - \{1.9085/10\}) \\ = 68.2\% \ (= 80.9\%)$$

for $I_1 = 10^{-6} (10^{-2})$ Watts/m², respectively. This is the (fractional) amount of third harmonic, as heard by the human ear for a triangle wave. This is quite large, but again, not as large as that for the square wave! Again, note that the ratio, L_n/L_1 increases (logarithmically) with increasing amplitude of the square wave! For a loudness of the fundamental tone of $L_1 = 60 \ dB \ (100 \ dB)$, the loudness of the third harmonic, for $|r_3| / |r_1| = 1/3 = 33.3\%$ is:

$$L_{3} = 10 \log_{10} (I_{3} / I_{1}) + 10 \log_{10} (I_{1} / I_{o})$$

= 40 log_{10} (0.3333) + 60 dB (100 dB)
= -19.08 dB + 60 dB (100 dB)
= 40.92 dB (80.92 dB), respectively.

The following figure shows the loudness ratios, L_n/L_1 for the first twenty harmonics (i.e. n < 20) associated with the bipolar triangle wave, for loudness values of the fundamental of $L_1 = 60 dB$ (~ quiet) and for $L_1 = 100 dB$ (~ quite loud). This is what the human ear perceives as the loudness of the harmonics relative to that of the fundamental. Note that the decrease in the loudness ratio, L_n/L_1 with increasing harmonic #, n is quite slow.