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Using these relations in the above formulae for determining the Fourier coefficients, an
and bn we obtain, after much algebra and using the fact that sin(3nn/2) = — sin(n=/2), that:

an=0foralln>0
and:
bn = 2*(2/nx)? sin(nm/2)

The even Fourier coefficients, bn= 0 forn=2,4, 6, 8, ..... etc.
The odd Fourier coefficients, bn = +2*(2/nr)? forn =1, 5, 9, 13, .... etc.
The odd Fourier coefficients, bn = —2*(2/nr)? forn = 3, 7, 11, 15, ... etc.

Thus, the Fourier series for the symmetrical, bipolar triangle wave of unit amplitude, as
shown in the above figure is given by:

(0) luiange = a—2° +3a,cos0, + > b sing, =2 > (-1)™?(2) sin(ne)
—wave n=1 =1 =1
odd-n

Using the replacement: nosa =2m -1, m=1,2, 3,4, ....... in the above summation, we
can alternatively write the Fourier series expansion for this triangle wave as:

(0) lupange = 22 (D)™ * (2= ) sin[(2m ~1)0] = = fsin @ — 1sin 30 + 45in50 — &sin 76 + ...
1

—wave m=

Note that the magnitudes of the non-zero amplitudes of the harmonics, |ry| = |bn| =
8/(nm)?, as shown in the figure(s) below for the first 20 harmonics.

Harmonic Content of a Bipolar Triangle Wave
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