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Using these relations in the above formulae for determining the Fourier coefficients, an 
and bn we obtain, after much algebra and using the fact that sin(3n/2) =  sin(n/2), that: 

 

an = 0 for all n > 0 
and: 

bn = 2*(2/n)2 sin(n/2) 
 

The even Fourier coefficients, bn =   0              for n = 2, 4,  6,  8, ..... etc.  
 

The odd  Fourier coefficients, bn = +2*(2/n)2 for n = 1, 5,  9, 13, .... etc. 
 

The odd  Fourier coefficients, bn = 2*(2/n)2 for n = 3, 7, 11, 15, ... etc.  
 

Thus, the Fourier series for the symmetrical, bipolar triangle wave of  unit amplitude, as 
shown in the above figure is given by: 

Using the replacement: nodd = 2 m 1, m = 1, 2, 3, 4, ....... in the above summation, we 
can alternatively write the Fourier series expansion for this triangle wave as: 

 
     Note that the magnitudes of the non-zero amplitudes of the harmonics,  |rn| = |bn| = 
8/(n)2, as shown in the figure(s) below for the first 20 harmonics. 
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