
To connect these results with the physical world, we return to the example of the guitar. As shown (again) in the figure below, the scale length, L_{scale} of the guitar corresponds to half the wavelength, λ of the fundamental, for open-string notes played on the guitar, i.e. $L_{scale} = \frac{1}{2} \lambda$. For a pick position distance, L_{pick} (referenced from the bridge of the guitar), this is a fractional distance, $\beta_{pick} \equiv L_{pick} / L_{scale} = 2L_{pick} / \lambda$.

In the following table, we summarize the $\beta_{pick} \equiv L_{pick} / L_{scale}$ locations for the nodes and anti-nodes associated with the first 10 harmonics. Playing at the anti-node locations will result in enhancing that particular harmonic, while playing at the nodal-locations will cause that harmonic to be absent. Physically, values of $\beta_{pick} \equiv L_{pick} / L_{scale} < \frac{1}{2}$ correspond to playing between the bridge and the bottom end of the neck, at the body of the guitar. Smaller values of $\beta_{pick} \equiv L_{pick} / L_{scale}$ are closer to the bridge end of the guitar.

Harmonic #	$\beta_{pick} \equiv L_{pick} / L_{scale}$	$\beta_{pick} \equiv L_{pick} / L_{scale}$
n	for Node	for Anti-Node
1 (Fundamental)	_	1/2
2	1/2	1/4, 3/4
3	1/3, 2/3	$1/_{6}, 3/_{6}=1/_{2}, 5/_{6}$
4	1/4, 2/4 = 1/2, 3/4	¹ / ₈ , ³ / ₈ , ⁵ / ₈ , ⁷ / ₈
5	1/5, 2/5, 3/5, 4/5	$1/_{10}, 3/_{10}, 5/_{10} = 1/_2, 7/_{10}, 9/_{10}$
6	$1/_{6}, 2/_{6}=1/_{3}, 3/_{6}=1/_{2}, 4/_{6}=2/_{3}, 5/_{6}$	$1/_{12}$, $3/_{12}=1/_4$, $5/_{12}$, $7/_{12}$
7	1/7, 2/7, 3/7, 4/7, 5/7, 6/7	$1/_{14}, 3/_{14}, 5/_{14}, 7/_{14} = 1/_2, 9/_{14} \dots$
8	$1/_{8}, 2/_{8}=1/_{4}, 3/_{8}, 4/_{8}=1/_{2}, 5/_{8}, \dots$	$1/_{16}, 3/_{16}, 5/_{16}, 7/_{16}, 9/_{16}, 11/_{16},$
9	$1/9, 2/9, 3/9=1/3, 4/9, 5/9, \dots$	$1/_{18}$, $3/_{18}=1/_{6}$, $5/_{18}$, $7/_{18}$,
10	$1/_{10}, 2/_{10} = 1/_5, 3/_{10}, 4/_{10}, 5/_{10}, \dots$	$1/_{20}, 3/_{20}, 5/_{20}=1/4, 7/_{20}, \dots$

Thus, from the above table, we can see that for playing on <u>nodes</u> associated with the n^{th} harmonic, that $\beta_{pick} \equiv L_{pick} / L_{scale} = m / n$, where *n* is the harmonic #, and *m* is an integer such that m = 1, 2, 3, < n. For playing on <u>anti-nodes</u> associated with the n^{th} harmonic, we see that $\beta_{pick} \equiv L_{pick} / L_{scale} = (2m - 1) / 2n$, where again, *m* is an integer such that m = 1, 2, 3, < n.