
Fourier Analysis III:

More Examples of the Use of Fourier Analysis

D. Fourier Analysis of a Periodic, Symmetrical Triangle Wave

We now consider a *spatially*-periodic, symmetrical, bipolar triangle wave of <u>unit</u> amplitude, as shown in the figure below:

Mathematically, this *odd*-symmetry waveform, on the "generic" interval $0 \le \theta < 2\pi$ (i.e. one cycle of this waveform) is described as:

and:

$$f(\theta) = f(kx) = -(2/\pi)\theta + 2$$
 for $\pi/2 \le \theta < 3\pi/2$

 $f(\theta) = f(kx) = +(2/\pi)\theta$ for $0 \le \theta < \pi/2$

and:

$$f(\theta) = f(kx) = +(2/\pi)\theta - 4$$
 for $3\pi/2 \le \theta < 2\pi$

Where we used the straight line equation, y = mx + b to determine the slopes, *m* and the intercepts, *b* associated with each of the three line segments in the above waveform on this θ -interval.