Now the *indefinite* integrals:

$$
\int \cos(n\theta)d\theta = +\frac{\sin(n\theta)}{n} \qquad \qquad \int \sin(n\theta)d\theta = -\frac{\cos(n\theta)}{n}
$$

Thus, the Fourier coefficients, a_n and b_n , for $n > 0$ are:

$$
a_n = \frac{+1}{n\pi} \{ [\sin(n\theta) |_{\theta=\pi} - \sin(n\theta) |_{\theta=0}] - [\sin(n\theta) |_{\theta=2\pi} - \sin(n\theta) |_{\theta=\pi}] \}
$$

= $\frac{+1}{n\pi} \{ [\sin(n\pi) - \sin(0)] - [\sin(2n\pi) - \sin(n\pi)] \} = \frac{1}{n\pi} \{ [0 - 0] - [0 - 0] \} = 0$

since $sin(0) = sin(n\pi) = sin(2n\pi) = 0$ for *all* integers, $n = 1, 2, 3, 4, \dots$, and:

$$
b_n = \frac{-1}{n\pi} \{ [\cos(n\theta) |_{\theta=\pi} - \cos(n\theta) |_{\theta=0}] - [\cos(n\theta) |_{\theta=\pi} - \cos(n\theta) |_{\theta=\pi}] \}
$$

= $\frac{-1}{n\pi} \{ [\cos(n\pi) - \cos(0)] - [\cos(2n\pi) - \cos(n\pi)] \} = \frac{-1}{n\pi} \{ [\cos(n\pi) - 1] - [1 - \cos(n\pi)] \}$
= $\frac{-2}{n\pi} [\cos(n\pi) - 1] = \frac{2}{n\pi} [1 - \cos(n\pi)]$

Now $cos(0) = cos(2n\pi) = +1$ for *all* integers, $n = 1, 2, 3, 4, \dots$, and $cos(n\pi) = +1$ for the *even* integers, $n = 2, 4, 6, 8, \dots$, and $cos(n\pi) = -1$ for the *odd* integers, $n = 1, 3, 5, 7, \dots$

Thus, we see that *all* of the Fourier coefficients, a_n for the *even* functions, $cos(\theta_n)$ vanish i.e. $a_n = 0$ for <u>all</u> integers, $n = 1, 2, 3, 4, ...$

The Fourier coefficients, b_n for the *odd* functions, $sin(\theta_n)$ vanish for the *even* harmonics, i.e. $b_n = 0$ when $n = 2, 4, 6, 8, \dots$, but the Fourier coefficients, b_n are non-zero for the *odd* harmonics, when $n = 1, 3, 5, 7, \dots$, where $b_n = \frac{4}{n\pi}$.

Thus, the Fourier series expansion of a periodic, bipolar, 50% duty-cycle square wave as shown in the above figure is given by:

$$
f(\theta)|_{square} = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} a_n \cos \theta_n + \sum_{n=1}^{n=\infty} b_n \sin \theta_n = \frac{4}{\pi} \sum_{\substack{n=1 \text{odd } n}}^{n=\infty} \frac{\sin(n\theta)}{n}
$$

Using the replacement: $n_{odd} = 2 m - 1$, $m = 1, 2, 3, 4, \dots$ in the above summation, we can alternatively write the Fourier series expansion for this square wave as:

$$
f(\theta)|_{square} = \frac{4}{\pi} \sum_{m=1}^{m=\infty} \frac{\sin[(2m-1)\theta]}{(2m-1)} = \frac{4}{\pi} \left\{ \sin \theta + \frac{1}{3} \sin 3\theta + \frac{1}{5} \sin 5\theta + \frac{1}{7} \sin 7\theta + \dots \right\}
$$

Thus, we see that for the periodic, bipolar, 50% duty-cycle square wave, only *odd* harmonics (i.e. *odd* integer multiples of the fundamental) are present in this waveform.

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, IL, 2000 - 2017. All rights reserved.