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Now the indefinite integrals: 

 
Thus, the Fourier coefficients,  an and bn, for n > 0 are: 

 
since sin(0) = sin(n) = sin(2n) = 0 for all integers, n = 1, 2, 3, 4,..... , and: 

 
Now cos(0) = cos(2n) = +1 for all integers, n = 1, 2, 3, 4,..... , and  cos(n) = +1 for the 
even integers, n = 2, 4, 6, 8, ....., and cos(n) = 1 for the odd integers, n = 1, 3, 5, 7, ..... 

 

Thus, we see that all of the Fourier coefficients, an for the even functions, cos(n) vanish  
i.e. an = 0 for all integers, n = 1, 2, 3, 4, ....  

 

The Fourier coefficients, bn for the odd functions, sin(n) vanish for the even harmonics, 
i.e. bn = 0 when n = 2, 4, 6, 8, ....., but the Fourier coefficients, bn are non-zero for the odd 
harmonics, when n = 1, 3, 5, 7, ....., where bn = +4/n. 

 

Thus, the Fourier series expansion of a periodic, bipolar, 50% duty-cycle square wave as 
shown in the above figure is given by: 

Using the replacement: nodd = 2 m 1, m = 1, 2, 3, 4, ....... in the above summation, we 
can alternatively write the Fourier series expansion for this square wave as: 

 
Thus, we see that for the periodic, bipolar, 50% duty-cycle square wave, only odd 
harmonics (i.e. odd integer multiples of the fundamental) are present in this waveform. 
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