Note that we can also write the Fourier series expansion of $f(x)$ in the time-domain, simply by changing the variable $x \rightarrow t$ and changing the spatial period, L to the temporal (i.e. time) period, τ , i.e. $L \rightarrow \tau$. Then since the frequency, $f = 1/\tau$, and $\omega = 2\pi f$, also with the relation $\omega/k = v$, we have:

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} a_n \cos(\frac{2\pi nt}{\tau}) + \sum_{n=1}^{n=\infty} b_n \sin(\frac{2\pi nt}{\tau})
$$

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} a_n \cos(2\pi nft) + \sum_{n=1}^{n=\infty} b_n \sin(2\pi nft)
$$

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{n=\infty} a_n \cos(n\omega t) + \sum_{n=1}^{n=\infty} b_n \sin(n\omega t)
$$

In the time-domain, the corresponding figure for the periodic temporal function, $f(t)$ is:

 Note further that since the *sine* and *cosine* functions, *sin (x)* and *cos (x)*, respectively, are linear combinations of powers of *x*,(i.e. their Taylor series expansions), then together with 1, they encompass all powers of *x*. Since the x^n form a complete set of basis vectors for the function "*space*" associated with the interval $x_1 \le x \le x_2$, then 1, and the Taylor series expansions for $sin(x)$ and $cos(x)$ also form a complete set of basis vectors for the function "*space*" associated with the interval $x_1 \le x \le x_2$. This is the reason that any mathematically well-behaved, periodic function, $f(x)$ can be precisely replicated by an appropriate linear combination of 1, *sin(nkx)* and *cos(nkx)* - i.e. a Fourier series expansion, as defined above.