We see that the Fourier coefficients, a_n and b_n are the *real* ("in-phase") and *imaginary* ("90° out-of-phase") components of the n^{th} complex harmonic amplitude, r_n , respectively. The Fourier coefficients, $a_n = |r_n| \cos \delta_n = |r_n| \sin \delta_n'$ and $b_n = |r_n| \sin \delta_n = |r_n| \cos \delta_n'$, where the *magnitude* of the the n^{th} complex harmonic amplitude is $|r_n| = (a_n^2 + b_n^2)^{\frac{1}{2}}$.

We also see that δ_n and δ_n' are *complementary* phase angles associated with the n^{th} harmonic, since they are related to each other by $\delta_n' = \pi/2 - \delta_n = 90^\circ - \delta_n$. Note also that the phase angles, $\delta_n(\delta_n')$ are referenced to the real (imaginary) axes of the complex plane, respectively. By convention, usually we are most interested in the phase angle, δ_n .

Exercises:

- 1. Work your way through the mathematical details of changing over from the representation(s) of the Fourier series in the space-domain, to those in the time-domain.
- 2. Work your way through the mathematical details of obtaining the Fourier coefficients, a_0 , a_n and b_n from their inner products, in the time-domain.
- 3. Prove, using the Taylor series expansions for e^x , sin(x) and cos(x) that $e^{+i\theta n} = cos \theta_n + i sin \theta_n$ and $e^{-i\theta n} = cos \theta_n i sin \theta_n$, where $i \equiv \sqrt{(-1)}$, thus i * i = -1, and i * -i = +1.
- 4. Work your way through the mathematical details of obtaining the *complex* Fourier series expansion(s) with the $c_n \& c_{-n}$ Fourier coefficients, from that with the a_0 , a_n and b_n Fourier coefficients.
- 5. Work your way through the mathematical details of deriving

$$f(\theta) = \frac{|r_0|}{2} + \sum_{n=1}^{\infty} |r_n| \cos(\theta_n - \delta_n)$$

from the Fourier series expansion with the the a_0 , a_n and b_n Fourier coefficients.

References for Fourier Analysis and Further Reading:

- 1. Fourier Series and Boundary Value Problems, 2nd Edition, Ruel V. Churchill, McGraw-Hill Book Company, 1969.
- 2. Mathematics of Classical and Quantum Physics, Volumes 1 & 2, Frederick W. Byron, Jr. and Robert W. Fuller, Addison-Wesley Publishing Company, 1969.
- 3. Mathematical Methods of Physics, 2nd Edition, Jon Matthews and R.L. Walker, W.A. Benjamin, Inc., 1964.