Beats Phenomenon

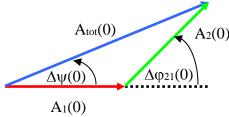
Linearly superpose (*i.e.* <u>add</u>) two signals with amplitudes $A_1(t)$ and $A_2(t)$, and which have similar/comparable frequencies, $\omega_2(t) \sim \omega_1(t)$, with instantaneous phase of the second signal relative to the first of $\Delta \varphi_{21}(t)$:

$$A_{1}(t) = A_{10} \cos(\omega_{1}(t)t) \qquad A_{2}(t) = A_{20} \cos(\omega_{2}(t)t + \Delta\phi_{21}(t))$$

$$A_{tot}(t) = A_{1}(t) + A_{2}(t) = A_{10} \cos(\omega_{1}(t)t) + A_{20} \cos(\omega_{2}(t)t + \Delta\phi_{21}(t))$$

Note that at the amplitude level, there is nothing explicitly overt and/or obvious in the above mathematical expression for the overall/total/resultant amplitude, Atot(t) that *easily* explains the phenomenon of beats associated with adding together two signals that have comparable amplitudes and frequencies.

However, let us consider the (instantaneous) <u>phasor relationship</u> between the individual amplitudes for the two signals, $A_1(t)$ and $A_2(t)$ respectively. Their relative initial phase difference at time t = 0 is $\Delta \phi_{21}(t=0)$ and the resultant/total amplitude, $A_{tot}(t=0)$ is shown in the figure below, for time, t = 0:



From the law of cosines, the magnitude of the total amplitude, $A_{tot}(t)$ at an arbitrary time, t is obtained from the following:

$$A_{tot}^{2}(t) = A_{1}^{2}(t) + A_{2}^{2}(t) - 2A_{1}(t)A_{2}(t)\cos\left[\pi - \left((\omega_{2}(t) - \omega_{1}(t))t + \Delta\phi_{21}(t)\right)\right]$$

$$A_{tot}^{2}(t) = A_{1}^{2}(t) + A_{2}^{2}(t) + 2A_{1}(t)A_{2}(t)\cos\left((\omega_{2}(t) - \omega_{1}(t))t + \Delta\phi_{21}(t)\right)$$

Thus,

$$\begin{split} A_{tot}(t) &= \sqrt{A_1^2(t) + A_2^2(t) + 2A_1(t)A_2(t)\cos\left((\omega_1(t) - \omega_2(t))t + \Delta\phi_{21}(t)\right)} \\ &= \sqrt{A_{10}^2\cos^2\left((\omega_1(t)t) + A_{20}^2\cos^2\left((\omega_2(t)t)\right)\right) \\ &+ 2A_{10}A_{20}\cos\left((\omega_1(t)t)\cos\left((\omega_2(t)t + \Delta\phi_{21}(t))\cos\left((\omega_2(t) - \omega_1(t))t + \Delta\phi_{21}(t)\right)\right)} \end{split}$$

For equal amplitudes, $A_{10} = A_{20} = A_0$, zero relative initial phase, $\Delta \phi_{21} = 0$ and constant (i.e. time-independent) frequencies, ω_2 and ω_1 , this expression reduces to:

$$A_{tot}(t) = A_0 \sqrt{\cos^2 \omega_1 t + \cos^2 \omega_2 t + 2\cos \omega_1 t \cos \omega_2 t \cos \left((\omega_2 - \omega_1) t \right)}$$

The phase of the total amplitude, $A_{tot}(t)$ relative to that of the first amplitude $A_1(t)$, at an arbitrary time, t is $\Delta \psi(t)$ and is obtained from the projections of the total amplitude phasor, $A_{tot}(t)$ onto the y- and x- axes of the 2-D phasor plane:

$$\tan(\Delta \psi) = \frac{A_2(t)\cos(\omega_2(t)t + \Delta \varphi_{21}(t))\sin\Delta \varphi_{21}(t)}{A_1(t)\cos(\omega_1(t)t) + A_2(t)\cos(\omega_2(t)t + \Delta \varphi_{21}(t))\cos\Delta \varphi_{21}(t)}$$

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002-2017. All rights reserved.