The phase angle, $\Delta \psi(t)$ of the overall/resultant amplitude, $Z_{tot}(t)$ relative to the first amplitude, $Z_1(t)$ can be obtained from the relation $Tan\{\Delta \psi(t)\} \equiv Im\{Z_{tot}(t)\}/Re\{Z_{tot}(t)\}$, thus:

$$Tan\{\Delta\psi(t)\} = A_2(t)Sin\{(\omega_2(t) - \omega_1(t))t + \Delta\varphi_{21}(t)\}/[A_1(t) + A_2(t)Cos\{(\omega_2(t) - \omega_1(t))t + \Delta\varphi_{21}(t)\}]$$

Beats Phenomenon

Linearly superpose (i.e. add) two signals with amplitudes $A_1(t)$ and $A_2(t)$, and which have similar/comparable frequencies, $\omega_2(t) \sim \omega_1(t)$, with instantaneous phase of the second signal relative to the first of $\Delta \varphi_{21}(t)$:

$$A_{1}(t) = A_{10}Cos(\omega_{1}(t)t) \qquad A_{2}(t) = A_{20}Cos(\omega_{2}(t)t + \Delta\varphi_{21}(t))$$

$$A_{tot}(t) = A_{1}(t) + A_{2}(t) = A_{10}Cos(\omega_{1}(t)t) + A_{20}Cos(\omega_{2}(t)t + \Delta\varphi_{21}(t))$$

Note that at the amplitude level, there is nothing explicitly overt and/or obvious in the above mathematical expression for the overall/total/resultant amplitude, $A_{tot}(t)$ that *easily* explains the phenomenon of beats associated with adding together two signals that have comparable amplitudes and frequencies.

However, let us consider the (instantaneous) <u>phasor relationship</u> between the individual amplitudes for the two signals, $A_1(t)$ and $A_2(t)$ respectively. Their relative initial phase difference at time t=0 is $\Delta\phi_{21}(t=0)$ and the resultant/total amplitude, $A_{tot}(t=0)$ is shown in the figure below, for time, t=0:

From the law of cosines, the magnitude of the total amplitude, $A_{tot}(t)$ at an arbitrary time, t is obtained from the following:

$$A_{tot}^{2}(t) = A_{1}^{2}(t) + A_{2}^{2}(t) - 2A_{1}(t)A_{2}(t)Cos\left[\pi - \left((\omega_{2}(t) - \omega_{1}(t))t + \Delta\varphi_{21}(t)\right)\right]$$

$$A_{tot}^{2}(t) = A_{1}^{2}(t) + A_{2}^{2}(t) + 2A_{1}(t)A_{2}(t)Cos((\omega_{2}(t) - \omega_{1}(t))t + \Delta\varphi_{21}(t))$$

Thus,

$$\begin{split} &A_{tot}(t) = \sqrt{A_{1}^{2}(t) + A_{2}^{2}(t) + 2A_{1}(t)A_{2}(t)Cos\left((\omega_{1}(t) - \omega_{2}(t))t + \Delta\varphi_{21}(t)\right)} \\ &= \sqrt{A_{10}^{2}Cos^{2}\left(\omega_{1}(t)t\right) + A_{20}^{2}Cos^{2}\left(\omega_{2}(t)t\right) \\ &+ 2A_{10}A_{20}Cos\left(\omega_{1}(t)t\right)Cos\left(\omega_{2}(t)t + \Delta\varphi_{21}(t)\right)Cos\left((\omega_{2}(t) - \omega_{1}(t))t + \Delta\varphi_{21}(t)\right)} \end{split}$$

For equal amplitudes, $A_{10} = A_{20} = A_0$, zero relative initial phase, $\Delta \phi_{21} = 0$ and constant (i.e. time-independent) frequencies, ω_2 and ω_1 , this expression reduces to:

$$A_{tot}(t) = A_0 \sqrt{\cos^2 \omega_1 t + \cos^2 \omega_2 t + 2\cos \omega_1 t \cos \omega_2 t \cos \left((\omega_2 - \omega_1)t\right)}$$