Why "Uncertainty"?

"Uncertainty" refers to our inability to make definite predictions.

Consider this wave packet:

- Where is the object?
- What is its momentum?

The answer is, We don't know. We can't predict the result of either measurement with an accuracy better than the Δx and Δp given to us by the uncertainty principle.

Each time you look, you *find a local blip* that is in a different place (in fact, it is your looking that *causes* the wavefunction to "collapse"!).

If you look many times, you will find a probability distribution that is spread out

But you're uncertain about where that local blip will be in any one of the times you look -- it could be anywhere in the spread.

An important point: You never observe the wave function itself.

The wave merely gives the probabilities of obtaining the various measurement results. A measurement of position or momentum will always result in a definite result. You can infer the properties of the wave function by repeating the measurements (to measure the probabilities), but that's not the same as a direct observation_{Lecture 9, p 26}