$\overbrace{p}{p}$

Consider the momentum uncertainty in the y-direction.

- Before the slit, the y-position is not known, so the uncertainty of p_y can be zero. We know that $p_y = 0$.
- Just after the slit, the y-position has an uncertainty of about a/2. Therefore p_y must have an uncertainty Δp_y ≥ 2ħ/a. This corresponds to a change of direction by an angle, θ = Δp_y / p = 2ħ/ap. Using p = h/λ, we have θ = λ/(πa).

This is almost the diffraction answer: $\theta = \lambda/a$. The extra factor of π is due to our somewhat sloppy treatment of the uncertainty.

The important point is that the uncertainty principle results because matter behaves as a wave.