Solution

Calculate the wavelength of

a. an electron that has been accelerated from rest across a 3-Volt potential difference ($m_e = 9.11 \times 10^{-31}$ kg).

b. Ditto for a proton ($m_p = 1.67 \times 10^{-27}$ kg).

c. a major league fastball ($m_{baseball} = 0.15$ kg, v = 50 m/s).

a. $E = e V = 4.8 \times 10^{-19} J$	Physics 212
p = √(2m _e E) = 9.35×10 ⁻²⁵ kg m/s	Physics 211
$\lambda = h/p = 7.1 \times 10^{-10} \text{ m} = 0.71 \text{ nm}$	Physics 214

b. $p = \sqrt{(2m_pE)} = 4.00 \times 10^{-23} \text{ kg m/s}$ E is the same. $\lambda = h/p = 1.7 \times 10^{-11} \text{ m}$ Mass is bigger $\Rightarrow \lambda$ is smaller.

c. p = mv = 7.5 kg m/s λ = h/p = 8.8×10⁻³⁵ m SI units were designed to be convenient for macroscopic objects.

QM wave effects are negligible in the motion of macroscopic objects. 10⁻³⁵ m is many orders of magnitude smaller than any distance that has ever been measured (10⁻¹⁹ m, at Fermilab).

Lecture 8, p 27