Act 1 - Solution

1. It is observed that shining light with wavelength 310 nm on a material will eject electrons, while 312 nm will not. What is the workfunction of the material?

Hint: What is V_{stop} at the maximum wavelength (minimum frequency)?

a)
$$+2 V$$
 b) $-2 V$ c) $+2 eV$ d) $-4 eV$

The workfunction must have units of energy, and is defined to be *positive*, so c) and e) are the only possible candidates. $V_{\text{stop}} = 0$, so $E_{\text{photon}} = \Phi$. Use E = hc / $\lambda \rightarrow \lambda$ = hc / E = 1240 eV·nm / 310 nm = 4 eV

2. If the same light is shined onto a material with ϕ = 2 eV, what stopping voltage will prevent all electrons from making it to the collector?

The answer must have units of voltage. Since 2 eV of every incident photon's energy (4 eV) goes to freeing each electron, they can leave with \leq 2 eV in kinetic energy. A potential of 2 V is needed to slow such electrons to 0.