Solution

Three narrow slits with equal spacing *d* are at a distance L = 1.4 m away from a screen. The slits are illuminated at normal incidence with light of wavelength $\lambda = 570$ nm. The first principal maximum on the screen is at y = 2.0 mm.

1. What is the slit spacing, d?

The first maximum occurs when the path difference between adjacent slits is λ . This happens at sin $\theta = \lambda/d$. We are told that tan $\theta = y/L = 1.43 \times 10^{-3}$, so the small angle approximation is OK. Therefore, $d \approx \lambda / \theta = 0.40$ mm.

2. If the wavelength, λ , is increased, what happens to the width of the principal maxima? The relation between θ and ϕ is $\phi/2\pi = \delta/\lambda = d \sin\theta / \lambda$. Therefore, for every feature that is described by ϕ (peaks, minima, *etc.*) sin θ is proportional to λ . The width increases.

3. If the intensity of each slit alone is I_1 , what is the intensity of the secondary maximum? Two phasors cancel, leaving only one \rightarrow Phasor diagram:

d

