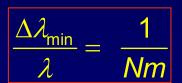
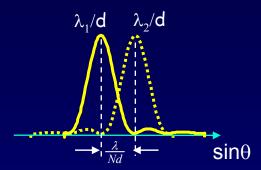
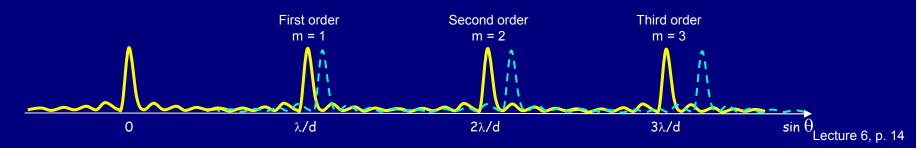
Diffraction Gratings (2)


We use Rayleigh's criterion:


The minimum wavelength separation we can resolve occurs when the λ_2 peak coincides with the first zero of the λ_1 peak:

So, the Raleigh criterion is $\Delta(\sin\theta)_{\min} = \lambda/Nd$.

However, the location of the peak is $sin\theta = m\lambda/d$.


Thus, $(\Delta \lambda)_{min} = (d/m)\Delta(\sin\theta)_{min} = \lambda/mN$:

Comments:

- It pays to use a grating that has a large number of lines, N. However, one must illuminate them all to get this benefit.
- It also pays to work at higher order (larger m): The widths of the peaks don't depend on m, but they are farther apart at large m.

