Supplement: Phase shift and Position or Time Shift

Because the wave is oscillating both in time and position, we can consider ϕ to be either a time or position shift:

Time:

$$y = A_1 \cos(kx - \omega t + \phi)$$

$$= A_1 \cos(kx - \omega (t - \phi/\omega))$$

$$= A_1 \cos(kx - \omega (t - \phi T/2\pi))$$

$$= A_1 \cos(kx - \omega (t - \delta t))$$

The time shift: $\delta t/T = \phi/2\pi$

Positive ϕ shifts to later times.

Position:

```
y = A_1 \cos(kx - \omega t + \phi)
= A_1 \cos(k(x+\phi/k) - \omega t)
= A_1 \cos(k(x+\phi\lambda/2\pi) - \omega t)
= A_1 \cos(k(x-\delta x) - \omega t)
```

The position shift: $\delta x/\lambda = -\phi/2\pi$

Positive ϕ shifts to negative position.