Electrical Conductivity

The ability to conduct electricity varies enormously between different types of solids.

Resistivity
$$\rho$$
 is defined by: $J = \frac{I}{A} = \frac{1}{\rho}E$ $\rho = \frac{1}{\sigma} = \frac{m}{ne^2\tau}$

where J = current density and E = applied electric field. Resistivity depends on the scattering time for electrons. Resistivity depends on the number of free electrons.

Material	Resistivity (Ω-m)	Carrier Density (cm⁻³)	Туре
Cu	2x10 ⁻⁸	10 ²³	conductor
Si	3x10 ³	10 ¹⁰	semiconductor
Diamond	2x10 ¹⁶	small	insulator

Example properties at room temperature: