
Solution

The relative phase of two waves also depends on the relative distances to the sources:

The two waves at this point are "out of phase". Their phase difference ϕ depends on the path difference $\delta \equiv r_2 - r_1$.

Path erence	Phase difference	Reminder: A can be negative. "Amplitude" is the absolute value.	
δ	ф	$A = 2A_1 \cos(\phi/2)$	1
0	0	2A ₁ / / / / / /	411
$\lambda/4$	$\pi/2$	$\sqrt{2}A_1$	2I ₁
$\lambda/2$	π		0
λ	2π	2A ₁ ////////////////////////////////////	4I ₁

Each fraction of a wavelength of path difference gives that fraction of 360° (or 2π) of phase difference:

$$\frac{\phi}{2\pi} = \frac{\delta}{\lambda}$$