Solution

Consider a particle in a 2D well, with $L_x = L_y = L$.

1. Compare the energies of the (2,2), (1,3), and (3,1) states?

a.
$$E_{(2,2)} > E_{(1,3)} = E_{(3,1)}$$

b. $E_{(2,2)} = E_{(1,3)} = E_{(3,1)}$
c. $E_{(2,2)} < E_{(1,3)} = E_{(3,1)}$
 $E_{(1,3)} = E_{(3,1)} = E_{0} (1^{2} + 3^{2}) = 10 E_{0}$
 $E_{(2,2)} = E_{0} (2^{2} + 2^{2}) = 8 E_{0}$
 $E_{(2,2)} = E_{0} (2^{2} + 2^{2}) = 8 E_{0}$
 $E_{0} = \frac{h^{2}}{8mL^{2}}$

- 2. If we squeeze the box in the x-direction (*i.e.*, $L_x < L_y$) compare $E_{(1,3)}$ with $E_{(3,1)}$.
 - a. $E_{(1,3)} < E_{(3,1)}$ b. $E_{(1,3)} = E_{(3,1)}$ c. $E_{(1,3)} > E_{(3,1)}$

Because $L_x < L_y$, for a given n, E_0 for x motion is larger than E_0 for y motion. The effect is larger for larger n. Therefore, $E_{(3,1)} > E_{(1,3)}$.

Example: $L_x = \frac{1}{2}$, $L_y = 1$:

We say "the degeneracy has been lifted."