Solution

Consider an electron around a nucleus that has two protons, like an ionized Helium atom.

- Compare the "effective Bohr radius" a_{0,He} with the usual Bohr radius for hydrogen, a₂: Bohr radius for hydrogen, a₂:
 - **a.** $a_{0,He} > a_{0}$ **b.** $a_{0,He} = a_{0}$ **c.** $a_{0,He} < a_{0}$ **a.** $a_{0} \equiv \frac{\hbar^{2}}{m\kappa e^{2}} \Rightarrow a_{0,He} \equiv \frac{\hbar^{2}}{m\kappa(2e)e} = \frac{a_{0}}{2}$ This should make sense: more charge \Rightarrow stronger attraction
 - → electron sits closer to the nucleus
- 2. What is the ratio of ground state energies $E_{0,He}/E_{0,H}$?
 - a. $E_{0,He}/E_{0,H} = 1$ b. $E_{0,He}/E_{0,H} = 2$ c. $E_{0,He}/E_{0,H} = 4$