Solution

At what radius are you most likely to find the electron?

Looks like a no-brainer. r = 0, of course!

Well, that's not the answer.

You must find the probability $P(r)\Delta r$ that the electron is in a shell of thickness Δr at radius r. For a given Δr the volume, ΔV , of the shell increases with radius.

 $\Delta V = 4\pi r^2 \Delta r$

 Δr

The radial probability has an extra factor of r²:

 $P(r)\Delta r = |\psi(r)|^2 \Delta V = Cr^2 e^{-2r/a_o} \Delta r$ Set dP/dr = 0 to find: $r_{max} = a_0 !$

More volume at larger r.

No volume at r = 0.

