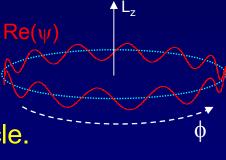
Quantized Angular Momentum

Linear momentum depends on the wavelength (k= $2\pi/\lambda$):


 $p = \hbar k$ where $\psi(x) \propto e^{ikx}$

Angular momentum depends on the tangential component of the momentum. Therefore L_{z} depends on the wavelength as one moves around a circle in the x-y plane. Therefore, a state with L_{z} has a similar form:

> Ne're ignoring R(r) for now.

$$L_z = m\hbar$$
 where $\psi(\vec{r}) \propto Y_{lm}(\theta, \phi) \propto e^{im\phi}$

An important boundary condition: An integer number of wavelengths must fit around the circle. Otherwise, the wave function is not single-valued.

Reminder: $e^{im\phi} = \cos(m\phi) + i \sin(m\phi)$

This implies that $m = 0, \pm 1, \pm 2, \pm 3, \dots$

 $L_7 = 0, \pm \hbar, \pm 2\hbar, \pm 3\hbar, ...$

Angular momentum is quantized!!