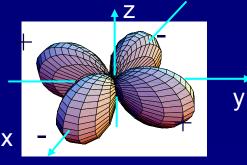

Cylindrical Symmetry


Why do none of the graphs display φ-dependence? (They all have cylindrical symmetry.)

For a given m, the ϕ dependence of ψ is $e^{im\phi}$. When we square it to find the probability, $e^{im\phi}e^{-im\phi} = 1$. In order to see ϕ dependence, we need a superposition of different m's.

For example, consider the superposition: (I = 1, m = +1) & (I = 1, m = -1). This will have an azimuthal wave function: $e^{i\phi} + e^{-i\phi} \approx \cos \phi$, i.e., lobes along the x-axis:

Similar arguments explain how to create the usual "d" lobes, from I =2, m = ± 2 superpositions:

See Supplement for more info.

Ζ

Х