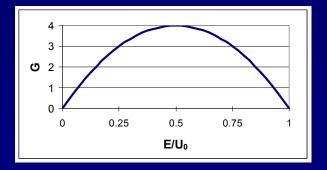
Tunneling Through a Barrier

In many situations, the barrier width L is much larger than the 'decay length' 1/K of the penetrating wave (KL >> 1). In this case $B_1 \approx 0$ (why?), and the result resembles the infinite barrier. The tunneling coefficient simplifies:


$$T \approx Ge^{-2KL}$$
 where $G = 16 \frac{E}{U_0} \left(1 - \frac{E}{U_0} \right)$

$$\mathsf{X} = \sqrt{\frac{2m}{\hbar^2}} \big(U_0 - \mathbf{E} \big)$$

This is nearly the same result as in the "leaky particle" example! Except for G:

We will often ignore G. (We'll tell you when to do this.)

The important result is e^{-2KL}.

