
## Solution

An electron in an infinite square well of width L = 0.5 nm is (at t=0) described by the following wave function:

$$\Psi(x,t=0) = A_{\sqrt{\frac{2}{L}}} \left( \sin\left(\frac{\pi}{L}x\right) + \sin\left(\frac{2\pi}{L}x\right) \right)$$

1) Suppose we measure the energy. What results might we obtain? (a)  $E_1$  (b)  $E_2$  (c)  $E_3$  (c)  $E_3$  (c)  $E_3$  (c)  $E_1$  (c)  $E_1$  (c)  $E_1$  (c)  $E_1$  (c)  $E_1$  (c)  $E_1$  (c)  $E_2$  (c)  $E_3$  (c)  $E_1$  (

We will only obtain results that correspond to the terms appearing in  $\Psi$ . Therefore, only E<sub>1</sub> and E<sub>2</sub> are possible.



- 2) How do the probabilities of the various results depend on time?
- a) They oscillate with  $f = (E_2 E_1)/h$
- b) They vary in an unpredictable manner.
- c) They alternate between  $E_1$  and  $E_2$ .
  - (*i.e.*, it's always either  $E_1$  or  $E_2$ ).
- d) They don't vary with time.

The probabilities depend on the coefficients, not on the various  $\Psi$  terms themselves. Because the coefficients are simply numbers  $(A\sqrt{\frac{2}{L}})$ , there is no time dependence.