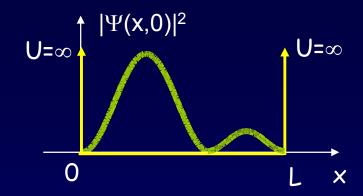
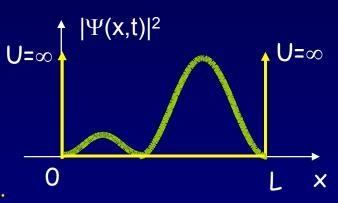
Solution

An electron in an infinite square well of width L = 0.5 nm is (at t=0) described by the following wave function:

$$\Psi(x,t=0) = A\sqrt{\frac{2}{L}} \left(\sin \left(\frac{\pi}{L} x \right) + \sin \left(\frac{2\pi}{L} x \right) \right)$$


1) Suppose we measure the energy. What results might we obtain?


a) E₁

b) E₂

c) E₃ d) Any result between E₁ and E₂

We will only obtain results that correspond to the terms appearing in Ψ . Therefore, only E_1 and E_2 are possible.

- 2) How do the probabilities of the various results depend on time?
- a) They oscillate with $f = (E_2 E_1)/h$
- They vary in an unpredictable manner.
- c) They alternate between E_1 and E_2 . (*i.e.*, it's always either E_1 or E_2).
- d) They don't vary with time.