Supplement: Group velocity

- Say a wave-packet starts out at x=0 at t=0.
 - meaning each harmonic component has the same phase there.
- After time t
 - the harmonic component at ω_1 will have changed phase by $\omega_1 \textbf{t}$
 - the harmonic component at ω_{2} will have changed phase by $\omega_{\text{2}}\text{t}$
 - The phase difference between these components at x=0 will now be $(\omega_2 \omega_1)$ t To find the point x where they're in phase, we need to find where the phase difference from moving downstream by x cancels that:
 - $(\omega_2 \omega_1) \dagger = (k_2 k_1) \times$ Or for small differences in $\omega_1 k$: $td\omega = xdk$

<u>Result</u>

 $v_q = x/t = d\omega/dk$

In this case $v_g = p/m$