## Solution

Consider a particle in an infinite well. It is in the state:

 $\Psi(x,t) = 0.5\Psi_2(x,t) + 0.866\Psi_4(x,t)$ 

with  $\psi_2$  and  $\psi_4$  both normalized.



We now measure the energy of the particle. What value is obtained?

a.  $E_2$  b.  $E_4$  c. 0.25  $E_2$  + 0.75  $E_4$ 

d. It depends on when we measure the energy.

We can only get one of the eigenvalues,  $E_2$  or  $E_4$ . (not answer c) The probability of measuring  $E_2$  is 25%. The probability of measuring  $E_4$  is 75%. Note:  $\Psi$  depends on time, but 0.5 and 0.866 don't. So, d is not correct.

The <u>average</u> energy (if we were to measure a large number of similar particles) is the weighted sum of the energies:  $0.25 E_2 + 0.75 E_4$ .

Not part of this act, but an important question, nevertheless: If  $E_2$  is observed, what is the state of the particle after the measurement?