Solution

Consider a particle in an infinite square well. At t = 0 it is in the state:

$$\Psi(x,t) = 0.5\psi_2(x) + A_2\psi_4(x)$$

with $\psi_2(x)$ and $\psi_4(x)$ both normalized.

- 1. What is A_2 ? a. 0.5 b. 0.707
- c. 0.866

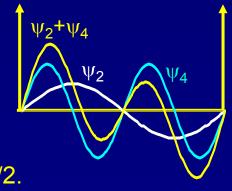
As stated, the question is ambiguous. A_2 could be complex. However, let's assume that A_2 is real.

We are told that $\psi_2(x)$ and $\psi_4(x)$ are both normalized.

Therefore: $0.5^2 + |A_2|^2 = 1 \implies |A_2| = \text{sqrt}(1 - 0.25) = 0.866$

 $A_2 = 0.866 e^{i\phi}$ also works, for all φ.

2. At some later time *t*,


what is the probability density at the center of the well?

- b. 1 c. It depends on the time *t*.

In general, the probability distribution of a superposition of energy eigenstates depends on time.

However, ψ_2 and ψ_4 each have a node at L/2.

Therefore, every superposition of them also has a node at L/2.

