Solution

Consider a particle in an infinite square well. At t = 0 it is in the state:

 $\Psi(x,t) = 0.5\psi_2(x) + A_2\psi_4(x)$

with $\psi_2(x)$ and $\psi_4(x)$ both normalized.

1. What is A₂? **a.** 0.5 **b.** 0.707 **c.** 0.866

As stated, the question is ambiguous. A_2 could be complex. However, let's assume that A_2 is real.

We are told that $\psi_2(x)$ and $\psi_4(x)$ are both normalized. Therefore: $0.5^2 + |A_2|^2 = 1 \implies |A_2| = \text{sqrt}(1 - 0.25) = 0.866$

A₂ = 0.866 $e^{i\phi}$ also works, for all ϕ .

2. At some later time *t*,

what is the probability density at the center of the well?

a. 0 b. 1 c. It depends on the time t.