Tunneling Through a Barrier (1)

What is the the probability that an incident particle tunnels through the barrier? It's called the "Transmission Coefficient, T". Consider a barrier (II) of height U_0 . U = 0 everywhere else.

Getting an exact result requires applying the boundary conditions at x = 0 and x = L, then solving six transcendental equations for six unknowns:

 $\psi_{I}(x) = A_{1} \sin kx + A_{2} \cos kx$ $\psi_{II}(x) = B_{1}e^{Kx} + B_{2}e^{-Kx}$ $\psi_{III}(x) = C_{1} \sin kx + C_{2} \cos kx$

 A_1 , A_2 , B_1 , B_2 , C_1 , and C_2 are unknown. K and k are known functions of E. This is more complicated than the infinitely wide barrier, because we can't require that $B_1 = 0$. (Why not?)