Tunneling Example: The Sun

The solar nuclear fusion process starts when two protons fuse together. In order for this reaction to proceed, the protons must "touch" (approach to within 10^{-15} m of each other). The potential energy, U(r), looks something like this:

The temperature of the sun's core is T ~ 1.3x10⁷ K. This corresponds to an average kinetic energy: $k_B T = 2 \times 10^{-16} \text{ J}$ ($k_B = \text{Boltzman's constant}$) At r = 10⁻¹⁵ m the height of the Coulomb barrier is: $U(r) = (1/4\pi\epsilon_0)e^2/r = (9\times10^9)\times(1.6\times10^{-19} \text{ C})^2/10^{-15} \text{ m}$ $= 2 \times 10^{-13} \text{ J}$

Thus, the protons in the sun very rarely have enough thermal energy to go over the Coulomb barrier.

How do they fuse then? By tunneling through the barrier!

