Solution

Polonium has an effective barrier width of ~10 fermi, leading to a tunneling probability of ~ 10^{-15} . Now consider Uranium, which has a similar barrier height, but an effective width of about ~20 fermi.

Estimate the tunneling probability in Uranium:

a. 10⁻³⁰ b. 10⁻¹⁴ c. 10⁻⁷

Think of it this way – there is a 10^{-15} chance to get through the first half of the barrier, and a 10^{-15} chance to then get through the second half.

Alternatively, when we double L in $T \approx e^{-2KL}$

Polonium: Using 10^{21} "attempts" at the barrier per second, the probability of escape is about 10^6 per second \rightarrow decay time $\sim 1 \text{ } \mu \text{s}$.

Uranium: Actually has a somewhat higher barrier too, leading to $P(\text{tunnel}) \sim 10^{-40} \rightarrow \text{decay time} \sim 10^{10} \text{ years!}$