Constraints on the Form of $\psi(x)$

 $|\psi(x)|^2$ corresponds to a physically meaningful quantity: the probability density of finding the particle near x. To avoid unphysical behavior, $\psi(x)$ must satisfy some conditions:

ψ(x) must be single-valued, and finite.
Finite to avoid infinite probability density.
ψ(x) must be continuous, with finite dψ/dx.
dψ/dx is related to the momentum.
In regions with finite potential, d²ψ/dx² must be finite.

To avoid infinite energies.

This also means that $d\psi/dx$ must be continuous.

There is no significance to the overall sign of $\psi(x)$. It goes away when we take the absolute square.

{In fact, we will see that $\psi(x,t)$ is usually complex!}