Particle in a Finite Well (2)

Regions I and III: $U(x) = U_0$, and $E < U_0$ Because $E < U_0$, these regions are "forbidden" in classical particles.

The SEQ $\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2}(E-U)\psi(x) = 0$ can be written: In region II this $\frac{d^2\psi(x)}{dx^2} - K^2\psi(x) = 0$ was a + sign. where: $K = \sqrt{\frac{2m}{\hbar^2}} (U_0 - E)$ $U_0 > E$: U(x) K is real. U₀ The general solution to this equation is: $\psi_{1}(x) = C_{1}e^{Kx} + C_{2}e^{-Kx}$ Region I: Ш Region III: $\psi_{\mu\nu}(x) = D_1 e^{\kappa x} + D_2 e^{-\kappa x}$ 0

 C_1 , C_2 , D_1 , and D_2 , will be determined by the boundary conditions.

Lecture 11, p 15