
Probability and Normalization

We now know that $\psi_n(x) = B_1 \sin\left(\frac{n\pi}{L}x\right)$. How can we determine B_1 ?

We need another constraint. It is the requirement that total probability equals 1.

The probability density at x is $|\psi(x)|^2$:

Therefore, the total probability is the integral:

In our square well problem, the integral is simpler, because $\psi = 0$ for x < 0 and x > L:

Requiring that
$$P_{tot} = 1$$
 gives us: $B_1 =$

$$P_{tot} = \int_{-\infty} |\psi(x)| dx$$
$$P_{tot} = |B_1|^2 \int_{0}^{L} \left| \sin\left(\frac{n\pi}{L}x\right) \right|^2 dx$$
$$= |B_1|^2 \frac{L}{2}$$