Particle in a Box (4)

Now, match ψ at the right boundary (x = L).

At x = L: $\psi_1(L) = \psi_{11}(L)$ $\Rightarrow 0 = B_1 \sin(kL)$

This constraint requires k to have special values:

$$k_n = \frac{n\pi}{L}$$
 $n = 1, 2, ...$ Using $k = \frac{2\pi}{\lambda}$, we find: $n\lambda = 2L$

This is the same condition we found for confined waves, *e.g.*, waves on a string, EM waves in a laser cavity, etc.:

For matter waves, the wavelength is related to the particle energy: $E = h^2/2m\lambda^2$

U(x)

Π

 Ψ_{II}

 ∞

Ψι

 ∞

Ι

 ψ_{I}

 \mathbf{O}

Lecture 10, p 21