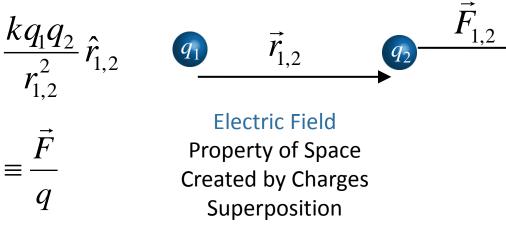
A Big Idea Review

Coulomb's Law Force law between point charges

Electric Field Force per unit charge


Gauss' Law

Flux through closed surface is always proportional to charge enclosed

 $\int \vec{E} \cdot d\vec{A} = \frac{\mathcal{Q}_{enc}}{\mathcal{E}_0}$

 $\vec{E} \equiv \frac{\vec{F}}{-}$

 $\vec{F}_{1,2}$

Gauss' Law Can be used to determine E field

Spheres Cylinders **Infinite Planes**

Electric Potential
Potential energy per
$$\Delta V_{a \to b} \equiv \frac{\Delta U_{a \to b}}{q} = -\int_{a}^{b} \vec{E} \cdot d\vec{l}$$

unit charge
Capacitance
Relates charge and
potential for two
conductor system
 $C \equiv \frac{Q}{V}$
 $C \equiv \frac{Q}{V}$