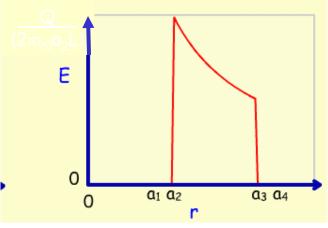

Calculation

A capacitor is constructed from two conducting cylindrical shells of radii a_1 , a_2 , a_3 , and a_4 and length $L(L >> a_i)$.


What is the capacitance *C* of this capacitor?

$$C \equiv \frac{Q}{V} \quad a_2 < r < a_3: \quad E = \frac{1}{2\pi\varepsilon_0} \frac{Q}{Lr}$$

$$r < a_2$$
: $E(r) = 0$
since $Q_{enclosed} = 0$

The potential difference between the conductors.

What is the sign of
$$V = V_{outer} - V_{inner}$$
?

A)
$$V_{outer} - V_{inner} < 0$$

B)
$$V_{outer} - V_{inner} = 0$$

A)
$$V_{outer} - V_{inner} < 0$$
 B) $V_{outer} - V_{inner} = 0$ C) $V_{outer} - V_{inner} > 0$