Calculation

A capacitor is constructed from two conducting cylindrical shells of radii a_1 , a_2 , a_3 , and a_4 and length $L(L >> a_i)$.

What is the capacitance *C* of this capacitor?

$$C \equiv \frac{Q}{V}$$

 $a_2 < r < a_3$: What is E(r)?

B)
$$\frac{1}{4\pi\varepsilon_o}\frac{Q}{r^2}$$

B)
$$\frac{1}{4\pi\varepsilon_o} \frac{Q}{r^2}$$
 C) $\frac{1}{2\pi\varepsilon_o} \frac{Q}{Lr}$ D) $\frac{1}{2\pi\varepsilon_o} \frac{2Q}{Lr}$ E) $\frac{1}{4\pi\varepsilon_o} \frac{2Q}{r^2}$

D)
$$\frac{1}{2\pi\varepsilon_o} \frac{2Q}{Lr}$$

$$\mathsf{E})\frac{1}{4\pi\varepsilon_o}\frac{2Q}{r^2}$$

Why?

Gauss' law:
$$\int \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\mathcal{E}_o}$$

Gauss' law:
$$\int \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_o} \longrightarrow E \cdot 2\pi r L = \frac{Q}{\varepsilon_o} \longrightarrow E = \frac{1}{2\pi\varepsilon_o} \frac{Q}{Lr}$$

Direction: Radially In