
Calculation

A capacitor is constructed from two conducting cylindrical shells of radii a_1 , a_2 , a_3 , and a_4 and length $L(L >> a_i)$.

What is the capacitance *C* of this capacitor?

$$C \equiv \frac{Q}{V}$$

Where is $-\mathbb{Q}$ on inner conductor located?

A) at
$$r = a_2$$

A) at $r = a_2$ B) at $r = a_1$ C) both surfaces D) throughout shell

Why?

Gauss' law:
$$\int \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\mathcal{E}_o}$$

We know that E = 0 in conductor (between a_1 and a_2)

$$\longrightarrow Q_{enclosed} = 0$$

$$Q_{enclosed} = 0 \longrightarrow {}^{+Q}$$
 must be on outer surface (a_2) , so that $Q_{enclosed} = 0$