Calculation

A capacitor is constructed from two conducting cylindrical shells of radii a_1 , a_2 , a_3 , and a_4 and length L ($L >> a_i$).

What is the capacitance C of this capacitor ?

$$C \equiv \frac{Q}{V}$$

Where is +Q on outer conductor located? A) at $r = a_4$ B) at $r = a_3$ C) both surfaces D) throughout shell Why? Gauss' law: $\int \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_o}$ We know that E = 0 in conductor (between a_3 and a_4) $Q_{enclosed} = 0 \longrightarrow +Q_{enclosed} = +Q - Q = 0$