
Calculation

A capacitor is constructed from two conducting cylindrical shells of radii a_1 , a_2 , a_3 , and a_4 and length $L(L >> a_i)$.

What is the capacitance *C* of this capacitor ?

Conceptual Analysis:

$$C \equiv \frac{Q}{V}$$

 $C \equiv \frac{Q}{V}$ But what is Q and what is V? They are not given?

- \triangleright Important Point: C is a property of the object! (concentric cylinders here)
 - Assume some Q (i.e., +Q on one conductor and -Q on the other)
 - These charges create *E* field in region between conductors
 - This *E* field determines a potential difference *V* between the conductors
 - V should be proportional to Q; the ratio Q/V is the capacitance.