

Calculation

Suppose give conductor a charge of -Q

- A) What is *E* everywhere?
- B) What are charge distributions at r_1 and r_2 ?

$$\int \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$

A)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{3Q}{r^2}$$

B)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{2Q}{r^2}$$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

A)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{3Q}{r^2}$$

 $r > r_2$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{2Q}{r^2}$$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

$$r_1 < r < r_2$$

$$E = 0$$